Numerical simulations of rotating axisymmetric sunspots
نویسندگان
چکیده
A numerical model of axisymmetric convection in the presence of a vertical magnetic flux bundle and rotation about the axis is presented. The model contains a compressible plasma described by the nonlinear MHD equations, with density and temperature gradients simulating the upper layer of the sun’s convection zone. The solutions exhibit a central magnetic flux tube in a cylindrical numerical domain, with convection cells forming collar flows around the tube. When the numerical domain is rotated with a constant angular velocity, the plasma forms a Rankine vortex, with the plasma rotating as a rigid body where the magnetic field is strong, as in the flux tube, while experiencing sheared azimuthal flow in the surrounding convection cells, forming a free vortex. As a result, the azimuthal velocity component has its maximum value close to the outer edge of the flux tube. The azimuthal flow inside the magnetic flux tube and the vortex flow are prograde relative to the rotating cylindrical reference frame. A retrograde flow appears at the outer wall. The most significant convection cell outside the flux tube is the location for the maximum value of the azimuthal magnetic field component. The azimuthal flow and magnetic structure are not generated spontaneously, but decay exponentially in the absence of any imposed rotation of the cylindrical domain.
منابع مشابه
MHD simulations of flows around rotating and non-rotating axisymmetric magnetic flux concentrations
We present results on modeling magnetic flux tubes in an unstably stratified medium and the flows around them using 2D axisymmetric magneto-hydrodynamic (MHD) simulations. The study is motivated by the formation of magnetic field concentrations at the solar surface in sunspots and magnetic pores and the large-scale flow patterns associated with them. The simulations provide consistent, self-mai...
متن کاملAxisymmetric Modes of Rotating Relativistic Stars in the Cowling Approximation
Axisymmetric pulsations of rotating neutron stars can be excited in several scenarios, such as core-collapse, crust and core-quakes and binary mergers and could become detectable either in gravitational waves or high-energy radiation. Here, we present a comprehensive study of all low-order axisymmetric modes of uniformly and rapidly rotating relativistic stars. Initial stationary configurations...
متن کاملThe axisymmetric collapse of a mixed patch and internal wave generation in uniformly stratified rotating fluid
We present an experimental and numerical investigation of the effect of Coriolis forces on the axisymmetric collapse of a uniform mixed region in uniformly stratified fluid. Laboratory experiments were performed on a rotating table in which a mixed patch contained initially in a hollow cylinder was released and so excited internal waves whose properties were analyzed using synthetic schlieren. ...
متن کاملNumerical simulations of stellar winds: polytropic models
We discuss steady-state transonic outflows obtained by direct numerical solution of the hydrodynamic and magnetohydrodynamic equations. We make use of the Versatile Advection Code, a software package for solving systems of (hyperbolic) partial differential equations. We proceed stepwise from a spherically symmetric, isothermal, unmagnetized, non-rotating Parker wind to arrive at axisymmetric, p...
متن کاملAnalytical Solution for Electro-mechanical Behavior of Piezoelectric Rotating Shaft Reinforced by BNNTs Under Non-axisymmetric Internal Pressure
In this study, two-dimensional electro-mechanical analysis of a composite rotating shaft subjected to non-axisymmetric internal pressure and applied voltage is investigated where hollow piezoelectric shaft reinforced by boron nitride nanotubes (BNNTs). Composite structure is modeled based on piezoelectric fiber reinforced composite (PFRC) theory and a representative volume element has been cons...
متن کامل